Killing Forms on 2-Step Nilmanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

Deformation of 2-Step Nilmanifolds with Abelian Complex Structures

We develop deformation theory for abelian invariant complex structures on a nilmanifold, and prove that in this case the invariance property is preserved by the Kuranishi process. A purely algebraic condition characterizes the deformations leading again to abelian structures, and we prove that such deformations are unobstructed. Various examples illustrate the resulting theory, and the behavior...

متن کامل

Geodesic Conjugacy in Two - Step Nilmanifolds

Two Riemannian manifolds are said to have C-conjugate geodesic flows if there exist an C diffeomorphism between their unit tangent bundles which intertwines the geodesic flows. We obtain a number of rigidity results for the geodesic flows on compact 2-step Riemannian nilmanifolds: For generic 2-step nilmanifolds the geodesic flow is C rigid. For special classes of 2-step nilmanifolds, we show t...

متن کامل

Killing Forms on Toric Sasaki - Einstein Spaces ∗

We summarize recent results on the construction of Killing forms on SasakiEinstein manifolds. The complete set of special Killing forms of the Sasaki-Einstein spaces are presented. It is pointed out the existence of two additional Killing forms associated with the complex holomorphic volume form of Calabi-Yau cone manifold. In the case of toric Sasaki-Einstein manifolds the Killing forms are ex...

متن کامل

Normal Conformal Killing Forms

We introduce in this paper normal twistor equations for differential forms and study their solutions, the so-called normal conformal Killing forms. The twistor equations arise naturally from the canonical normal Cartan connection of conformal geometry. Reductions of its holonomy are related to solutions of the normal twistor equations. The case of decomposable normal conformal holonomy represen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2019

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-019-00304-1